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Learning 
In this Workbook you will learn about sequences and series. You will learn about arithmetic
and geometric series and also about infinite series. You will learn how to test  the for the 
convergence of an infinite series. You will then learn about power series, in particular you
will study the binomial series. Finally you will apply your knowledge of power series 
to the process of finding series expansions of functions of a single variable. You will be 
able to find the Maclaurin and Taylor series expansions of simple functions about a point 
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Sequences and Series
�
�

�
�16.1

Introduction
In this Section we develop the ground work for later Sections on infinite series and on power series.
We begin with simple sequences of numbers and with finite series of numbers. We introduce the
summation notation for the description of series. Finally, we consider arithmetic and geometric series
and obtain expressions for the sum of n terms of both types of series.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand and be able to use the basic rules
of algebra

• be able to find limits of algebraic expressions'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• check if a sequence of numbers is
convergent

• use the summation notation to specify
series

• recognise arithmetic and geometric series and
find their sums
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1. Introduction
A sequence is any succession of numbers. For example the sequence

1, 1, 2, 3, 5, 8, . . .

which is known as the Fibonacci sequence, is formed by adding two consecutive terms together to
obtain the next term. The numbers in this sequence continually increase without bound and we say
this sequence diverges. An example of a convergent sequence is the harmonic sequence

1,
1

2
,

1

3
,

1

4
, . . .

Here we see the magnitude of these numbers continually decrease and it is obvious that the sequence
converges to the number zero. The related alternating harmonic sequence

1, −1

2
,

1

3
, −1

4
, . . .

is also convergent to the number zero. Whether or not a sequence is convergent is often easy to
deduce by graphing the individual terms. The diagrams in Figure 1 show how the individual terms
of the harmonic and alternating harmonic series behave as the number of terms increase.

term in sequence

1

1/2
1/3

1/4
1 2 3 4 5

harmonic

term in sequence

1

1/3

− 1/2

− 1/4 1 2 3 4 5

alternating harmonicalternating harmonic

Figure 1

Task

Graph the sequence:

1, −1, 1, −1, . . .

Is this convergent?

Your solution
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Answer

term in sequence

1

−1

1 2 3 4 5

Not convergent.

The terms in the sequence do not converge to a particular value. The value oscillates.

A general sequence is denoted by

a1, a2, . . . , an, . . .

in which a1 is the first term, a2 is the second term and an is the nth term is the sequence. For
example, in the harmonic sequence

a1 = 1, a2 =
1

2
, . . . , an =

1

n

whilst for the alternating harmonic sequence the nth term is:

an =
(−1)n+1

n

in which (−1)n = +1 if n is an even number and (−1)n = −1 if n is an odd number.

Key Point 1

The sequence a1, a2, . . . , an, . . . is said to be convergent if the limit of an as n increases
can be found. (Mathematically we say that lim

n→∞
an exists.)

If the sequence is not convergent it is said to be divergent.

Task

Verify that the following sequence is convergent

3

1× 2
,

4

2× 3
,

5

3× 4
, . . .

First find the expression for the nth term:

Your solution

Answer

an =
n + 2

n(n + 1)
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Now find the limit of an as n increases:

Your solution

Answer

n + 2

n(n + 1)
=

1 +
2

n
n + 1

→ 1

n + 1
→ 0 as n increases

Hence the sequence is convergent.

2. Arithmetic and geometric progressions
Consider the sequences:

1, 4, 7, 10, . . . and 3, 1, −1, −3, . . .

In both, any particular term is obtained from the previous term by the addition of a constant value (3
and −2 respectively). Each of these sequences are said to be an arithmetic sequence or arithmetic
progression and has general form:

a, a + d, a + 2d, a + 3d, . . . , a + (n− 1)d, . . .

in which a, d are given numbers. In the first example above a = 1, d = 3 whereas, in the second
example, a = 3, d = −2. The difference between any two successive terms of a given arithmetic
sequence gives the value of d which is called the common difference.

Two sequences which are not arithmetic sequences are:

1, 2, 4, 8, . . .

−1, −1

3
, −1

9
, − 1

27
, . . .

In each case a particular term is obtained from the previous term by multiplying by a constant factor

(2 and
1

3
respectively). Each is an example of a geometric sequence or geometric progression

with the general form:

a, ar, ar2, ar3, . . .

where ‘a’ is the first term and r is called the common ratio, being the ratio of two successive terms.
In the first geometric sequence above a = 1, r = 2 and in the second geometric sequence a = −1,

r =
1

3
.
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Task

Find a, d for the arithmetic sequence 3, 9, 15, . . .

Your solution

a = d =

Answer

a = 3, d = 6

Task

Find a, r for the geometric sequence 8,
8

7
,

8

49
, . . .

Your solution

a = r =

Answer

a = 8, r =
1

7

Task

Write out the first four terms of the geometric series with a = 4, r = −2.

Your solution

Answer

4,−8, 16,−32, . . .

The reader should note that many sequences (for example the harmonic sequences) are neither
arithmetic nor geometric.
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3. Series
A series is the sum of the terms of a sequence. For example, the harmonic series is

1 +
1

2
+

1

3
+

1

4
+ · · ·

and the alternating harmonic series is

1− 1

2
+

1

3
− 1

4
+ · · ·

The summation notation
If we consider a general sequence

a1, a2, . . . , an, . . .

then the sum of the first k terms a1 + a2 + a3 + · · ·+ ak is concisely denoted by
k∑

p=1

ap.

That is,

a1 + a2 + a3 + · · ·+ ak =
k∑

p=1

ap

When we encounter the expression
k∑

p=1

ap we let the index ‘p’ in the term ap take, in turn, the values

1, 2, . . . , k and then add all these terms together. So, for example

3∑
p=1

ap = a1 + a2 + a3

7∑
p=2

ap = a2 + a3 + a4 + a5 + a6 + a7

Note that p is a dummy index; any letter could be used as the index. For example
6∑

i=1

ai, and

6∑
m=1

am each represent the same collection of terms: a1 + a2 + a3 + a4 + a5 + a6.

In order to be able to use this ‘summation notation’ we need to obtain a suitable expression for the
‘typical term’ in the series. For example, the finite series

12 + 22 + · · ·+ k2

may be written as
k∑

p=1

p2 since the typical term is clearly p2 in which p = 1, 2, 3, . . . , k in turn.

In the same way

1− 1

2
+

1

3
− 1

4
+ · · · − 1

16
=

16∑
p=1

(−1)p+1

p

since an expression for the typical term in this alternating harmonic series is ap =
(−1)p+1

p
.
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Task

Write in summation form the series

1

1× 2
+

1

2× 3
+

1

3× 4
+ · · ·+ 1

21× 22

First find an expression for the typical term, “the pth term”:

Your solution

ap =

Answer

ap =
1

p(p + 1)

Now write the series in summation form:

Your solution
1

1× 2
+

1

2× 3
+

1

3× 4
+ · · ·+ 1

21× 22
=

Answer

1

1× 2
+

1

2× 3
+ · · · +

1

21× 22
=

21∑
p=1

1

p(p + 1)

Task

Write out all the terms of the series
5∑

p=1

(−1)p

(p + 1)2
.

Give p the values 1, 2, 3, 4, 5 in the typical term
(−1)p

(p + 1)2
:

Your solution
5∑

p=1

(−1)p

(p + 1)2
=

Answer

− 1

22
+

1

32
− 1

42
+

1

52
− 1

62
.
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4. Summing series

The arithmetic series
Consider the finite arithmetic series with 14 terms

1 + 3 + 5 + · · ·+ 23 + 25 + 27

A simple way of working out the value of the sum is to create a second series which is the first written
in reverse order. Thus we have two series, each with the same value A:

A = 1 + 3 + 5 + · · ·+ 23 + 25 + 27

and

A = 27 + 25 + 23 + · · ·+ 5 + 3 + 1

Now, adding the terms of these series in pairs

2A = 28 + 28 + 28 + · · ·+ 28 + 28 + 28 = 28× 14 = 392 so A = 196.

We can use this approach to find the sum of n terms of a general arithmetic series.
If

A = [a] + [a + d] + [a + 2d] + · · ·+ [a + (n− 2)d] + [a + (n− 1)d]

then again simply writing the terms in reverse order:

A = [a + (n− 1)d] + [a + (n− 2)d] + · · ·+ [a + 2d] + [a + d] + [a]

Adding these two identical equations together we have

2A = [2a + (n− 1)d] + [2a + (n− 1)d] + · · ·+ [2a + (n− 1)d]

That is, every one of the n terms on the right-hand side has the same value: [2a + (n− 1)d]. Hence

2A = n[2a + (n− 1)d] so A =
1

2
n[2a + (n− 1)d].

Key Point 2

The arithmetic series

[a] + [a + d] + [a + 2d] + · · ·+ [a + (n− 1)d]

having n terms has sum A where:

A =
1

2
n[2a + (n− 1)d]

HELM (2008):
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As an example

1 + 3 + 5 + · · ·+ 27 has a = 1, d = 2, n = 14

So A = 1 + 3 + · · ·+ 27 =
14

2
[2 + (13)2] = 196.

The geometric series
We can also sum a general geometric series.
Let

G = a + ar + ar2 + · · ·+ arn−1

be a geometric series having exactly n terms. To obtain the value of G in a more convenient form
we first multiply through by the common ratio r:

rG = ar + ar2 + ar3 + · · ·+ arn

Now, writing the two series together:

G = a + ar + ar2 + · · ·+ arn−1

rG = ar + ar2 + ar3 + · · · arn−1 + arn

Subtracting the second expression from the first we see that all terms on the right-hand side cancel
out, except for the first term of the first expression and the last term of the second expression so
that

G− rG = (1− r)G = a− arn

Hence (assuming r 6= 1)

G =
a(1− rn)

1− r

(Of course, if r = 1 the geometric series simplifies to a simple arithmetic series with d = 0 and has
sum G = na.)

Key Point 3

The geometric series
a + ar + ar2 + · · ·+ arn−1

having n terms has sum G where

G =
a(1− rn)

1− r
, if r 6= 1 and G = na, if r = 1

10 HELM (2008):
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Task

Find the sum of each of the following series:

(a) 1 + 2 + 3 + 4 + · · ·+ 100

(b)
1

2
+

1

6
+

1

18
+

1

54
+

1

162
+

1

486

(a) In this arithmetic series state the values of a, d, n:

Your solution

a = d = n =

Answer

a = 1, d = 1, n = 100.

Now find the sum:

Your solution

1 + 2 + 3 + · · ·+ 100 =

Answer

1 + 2 + 3 + · · ·+ 100 = 50(2 + 99) = 50(101) = 5050.

(b) In this geometric series state the values of a, r, n:

Your solution

a = r = n =

Answer

a =
1

2
, r =

1

3
, n = 6

Now find the sum:

Your solution
1

2
+

1

6
+

1

18
+

1

54
+

1

162
+

1

486
=

Answer

1

2
+

1

6
+ · · ·+ 1

486
=

1

2

(
1−

(
1

3

)6
)

1− 1

3

=
3

4

(
1−

(
1

3

)6
)

= 0.74897
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Exercises

1. Which of the following sequences is convergent?

(a) sin
π

2
, sin

2π

2
, sin

3π

2
, sin

4π

2
, . . .

(b)
sin

π

2
π

2

,
sin

2π

2
2π

2

,
sin

3π

2
3π

2

,
sin

4π

2
4π

2

, . . .

2. Write the following series in summation form:

(a)
ln 1

2× 1
+

ln 3

3× 2
+

ln 5

4× 3
+ · · ·+ ln 27

15× 14

(b) − 1

2× (1 + (100)2)
+

1

3× (1− (200)2)
− 1

4× (1 + (300)2)
+ · · ·+ 1

9× (1− (800)2)

3. Write out the first three terms and the last term of the following series:

(a)
17∑

p=1

3p−1

p!(18− p)
(b)

17∑
p=4

(−p)p+1

p(2 + p)

4. Sum the series:

(a) −5 − 1 + 3 + 7 . . . + 27

(b) −5 − 9 − 13 − 17 . . . − 37

(c)
1

2
− 1

6
+

1

18
− 1

54
+

1

162
− 1

486

Answers

1. (a) no; this sequence is 1, 0, −1, 0, 1, . . . which does not converge.

(b) yes; this sequence is
1

π/2
, 0, − 1

3π/2
, 0,

1

5π/2
, . . . which converges to zero.

2. (a)
14∑

p=1

ln(2p− 1)

(p + 1)(p)
(b)

8∑
p=1

(−1)p

(p + 1)(1 + (−1)p+1p2104)

3. (a)
1

17
,

3

2!(16)
,

32

3!(15)
, . . . ,

316

17!
(b) − 45

(4)(6)
,

56

(5)(7)
, − 67

(6)(8)
, . . . ,

1718

(17)(19)

4. (a) This is an arithmetic series with a = −5, d = 4, n = 9. A = 99

(b) This is an arithmetic series with a = −5, d = −4, n = 9. A = −189

(c) This is a geometric series with a =
1

2
, r = −1

3
, n = 6. G ≈ 0.3745
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Infinite Series
�
�

�
�16.2

Introduction
We extend the concept of a finite series, met in Section 16.1, to the situation in which the number
of terms increase without bound. We define what is meant by an infinite series being convergent
by considering the partial sums of the series. As prime examples of infinite series we examine the
harmonic and the alternating harmonic series and show that the former is divergent and the latter is
convergent.

We consider various tests for the convergence of series, in particular we introduce the ratio test which
is a test applicable to series of positive terms. Finally we define the meaning of the terms absolute
and conditional convergence.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• be able to use the
∑

summation notation

• be familiar with the properties of limits

• be able to use inequalities'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• use the alternating series test on infinite
series

• use the ratio test on infinite series

• understand the terms absolute and
conditional convergence

HELM (2008):
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1. Introduction
Many of the series considered in Section 16.1 were examples of finite series in that they all involved
the summation of a finite number of terms. When the number of terms in the series increases without
bound we refer to the sum as an infinite series. Of particular concern with infinite series is whether
they are convergent or divergent. For example, the infinite series

1 + 1 + 1 + 1 + · · ·

is clearly divergent because the sum of the first n terms increases without bound as more and more
terms are taken. It is less clear as to whether the harmonic and alternating harmonic series:

1 +
1

2
+

1

3
+

1

4
+ · · · 1− 1

2
+

1

3
− 1

4
+ · · ·

converge or diverge. Indeed you may be surprised to find that the first is divergent and the second is
convergent. What we shall do in this Section is to consider some simple convergence tests for infinite
series. Although we all have an intuitive idea as to the meaning of convergence of an infinite series
we must be more precise in our approach. We need a definition for convergence which we can apply
rigorously.

First, using an obvious extension of the notation we have used for a finite sum of terms, we denote
the infinite series:

a1 + a2 + a3 + · · ·+ ap + · · · by the expression
∞∑

p=1

ap

where ap is an expression for the pth term in the series. So, as examples:

1 + 2 + 3 + · · · =
∞∑

p=1

p since the pth term is ap ≡ p

12 + 22 + 32 + · · · =
∞∑

p=1

p2 since the pth term is ap ≡ p2

1− 1

2
+

1

3
− 1

4
+ · · · =

∞∑
p=1

(−1)p+1

p
here ap ≡

(−1)p+1

p

Consider the infinite series:

a1 + a2 + · · ·+ ap + · · · =
∞∑

p=1

ap

We consider the sequence of partial sums, S1, S2, . . . , of this series where

S1 = a1

S2 = a1 + a2

...

Sn = a1 + a2 + · · ·+ an

That is, Sn is the sum of the first n terms of the infinite series. If the limit of the sequence
S1, S2, . . . , Sn, . . . can be found; that is

14 HELM (2008):
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lim
n→∞

Sn = S (say)

then we define the sum of the infinite series to be S:

S =
∞∑

p=1

ap

and we say “the series converges to S”. Another way of stating this is to say that

∞∑
p=1

ap = lim
n→∞

n∑
p=1

ap

Key Point 4

Convergence of Infinite Series

An infinite series
∞∑

p=1

ap is convergent if the sequence of partial sums

S1, S2, S3, . . . , Sk, . . . in which Sk =
k∑

p=1

ap is convergent

Divergence condition for an infinite series
An almost obvious requirement that an infinite series should be convergent is that the individual
terms in the series should get smaller and smaller. This leads to the following Key Point:

Key Point 5

The condition:

ap → 0 as p increases (mathematically lim
p→∞

ap = 0)

is a necessary condition for the convergence of the series
∞∑

p=1

ap

It is not possible for an infinite series to be convergent unless this condition holds.

HELM (2008):
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Task

Which of the following series cannot be convergent?

(a)
1

2
+

2

3
+

3

4
+ · · ·

(b) 1 +
1

2
+

1

3
+

1

4
+ · · ·

(c) 1− 1

2
+

1

3
− 1

4
+ · · ·

In each case, use the condition from Key Point 5:

Your solution

(a) ap = lim
p→∞

ap =

Answer

ap =
p

p + 1
limp→∞

p

p + 1
= 1

Hence series is divergent.

Your solution

(b) ap = lim
p→∞

ap =

Answer

ap =
1

p
lim
p→∞

ap = 0

So this series may be convergent. Whether it is or not requires further testing.

Your solution

(c) ap = lim
p→∞

ap =

Answer

ap =
(−1)p+1

p
lim
p→∞

ap = 0 so again this series may be convergent.

Divergence of the harmonic series
The harmonic series:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·

has a general term an =
1

n
which clearly gets smaller and smaller as n →∞. However, surprisingly,

the series is divergent. Its divergence is demonstrated by showing that the harmonic series is greater
than another series which is obviously divergent. We do this by grouping the terms of the harmonic
series in a particular way:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · ≡ 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·
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Now (
1

3
+

1

4

)
>

1

4
+

1

4
=

1

2(
1

5
+

1

6
+

1

7
+

1

8

)
>

1

8
+

1

8
+

1

8
+

1

8
=

1

2(
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

)
>

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
=

1

2

and so on. Hence the harmonic series satisfies:

1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · · > 1 +

(
1

2

)
+

(
1

2

)
+

(
1

2

)
+ · · ·

The right-hand side of this inequality is clearly divergent so the harmonic series is divergent.

Convergence of the alternating harmonic series
As with the harmonic series we shall group the terms of the alternating harmonic series, this time to
display its convergence.
The alternating harmonic series is:

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

This series may be re-grouped in two distinct ways.

1st re-grouping

1− 1

2
+

1

3
− 1

4
+

1

5
+ · · · = 1−

(
1

2
− 1

3

)
−

(
1

4
− 1

5

)
−

(
1

6
− 1

7

)
· · ·

each term in brackets is positive since
1

2
>

1

3
,

1

4
>

1

5
and so on. So we easily conclude that S < 1

since we are subtracting only positive numbers from 1.

2nd re-grouping

1− 1

2
+

1

3
− 1

4
+

1

5
+ · · · =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+ · · ·

Again, each term in brackets is positive since 1 >
1

2
,

1

3
>

1

4
,

1

5
>

1

6
and so on.

So we can also argue that S >
1

2
since we are adding only positive numbers to the value of the first

term,
1

2
. The conclusion that is forced upon us is that

1

2
< S < 1

so the alternating series is convergent since its sum, S, lies in the range
1

2
→ 1. It will be shown in

Section 16.5 that S = ln 2 ' 0.693.

HELM (2008):
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2. General tests for convergence
The techniques we have applied to analyse the harmonic and the alternating harmonic series are
‘one-off’:- they cannot be applied to infinite series in general. However, there are many tests that
can be used to determine the convergence properties of infinite series. Of the large number available
we shall only consider two such tests in detail.

The alternating series test
An alternating series is a special type of series in which the sign changes from one term to the next.
They have the form

a1 − a2 + a3 − a4 + · · ·

(in which each ai, i = 1, 2, 3, . . . is a positive number)
Examples are:

(a) 1− 1 + 1− 1 + 1 · · ·

(b)
1

3
− 2

4
+

3

5
− 4

6
+ · · ·

(c) 1− 1

2
+

1

3
− 1

4
+ · · · .

For series of this type there is a simple criterion for convergence:

Key Point 6

The Alternating Series Test

The alternating series
a1 − a2 + a3 − a4 + · · ·

(in which each ai, i = 1, 2, 3, . . . are positive numbers) is convergent if and only if

• the terms continually decrease:

a1 > a2 > a3 > . . .

• the terms decrease to zero:

ap → 0 as p increases (mathematically lim
p→∞

ap = 0)

18 HELM (2008):
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Task

Which of the following series are convergent?

(a)
∞∑

p=1

(−1)p (2p− 1)

(2p + 1)
(b)

∞∑
p=1

(−1)p+1

p2

(a) First, write out the series:

Your solution

Answer

−1

3
+

3

5
− 5

7
+ · · ·

Now examine the series for convergence:

Your solution

Answer

(2p− 1)

(2p + 1)
=

(1− 1

2p
)

(1 +
1

2p
)
→ 1 as p increases.

Since the individual terms of the series do not converge to zero this is therefore a divergent series.

(b) Apply the procedure used in (a) to problem (b):

Your solution

Answer

This series 1− 1

22
+

1

32
− 1

42
+ · · · is an alternating series of the form a1 − a2 + a3 − a4 + · · · in

which ap =
1

p2
. The ap sequence is a decreasing sequence since 1 >

1

22
>

1

32
> . . .

Also lim
p→∞

1

p2
= 0. Hence the series is convergent by the alternating series test.
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3. The ratio test
This test, which is one of the most useful and widely used convergence tests, applies only to series
of positive terms.

Key Point 7

The Ratio Test

Let
∞∑

p=1

ap be a series of positive terms such that, as p increases, the limit of
ap+1

ap

equals

a number λ. That is lim
p→∞

ap+1

ap

= λ.

It can be shown that:

• if λ > 1, then
∞∑

p=1

ap diverges

• if λ < 1, then
∞∑

p=1

ap converges

• if λ = 1, then
∞∑

p=1

ap may converge or diverge.

That is, the test is inconclusive in this case.
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Example 1
Use the ratio test to examine the convergence of the series

(a) 1 +
1

2!
+

1

3!
+

1

4!
+ · · · (b) 1 + x + x2 + x3 + · · ·

Solution

(a) The general term in this series is
1

p!
i.e.

1 +
1

2!
+

1

3!
+ · · · =

∞∑
p=1

1

p!
ap =

1

p!
∴ ap+1 =

1

(p + 1)!

and the ratio

ap+1

ap

=
p!

(p + 1)!
=

p(p− 1) . . . (3)(2)(1)

(p + 1)p(p− 1) . . . (3)(2)(1)
=

1

(p + 1)

∴ lim
p→∞

ap+1

ap

= lim
p→∞

1

(p + 1)
= 0

Since 0 < 1 the series is convergent. In fact, it will be easily shown, using the techniques outlined
in 16.5, that

1 +
1

2!
+

1

3!
+ · · · = e− 1 ≈ 1.718

(b) Here we must assume that x > 0 since we can only apply the ratio test to a series of positive
terms.

Now

1 + x + x2 + x3 + · · · =
∞∑

p=1

xp−1

so that

ap = xp−1 , ap+1 = xp

and

lim
p→∞

ap+1

ap

= lim
p→∞

xp

xp−1
= lim

p→∞
x = x

Thus, using the ratio test we deduce that (if x is a positive number) this series will only converge
if x < 1.

We will see in Section 16.4 that

1 + x + x2 + x3 + · · · =
1

1− x
provided 0 < x < 1.
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Task

Use the ratio test to examine the convergence of the series:

1

ln 3
+

8

(ln 3)2
+

27

(ln 3)3
+ · · ·

First, find the general term of the series:

Your solution

ap =

Answer

1

ln 3
+

8

(ln 3)2
+ · · · =

∞∑
p=1

p3

(ln 3)p
so ap =

p3

(ln 3)p

Now find ap+1:

Your solution

ap+1 =

Answer

ap+1 =
(p + 1)3

(ln 3)p+1

Finally, obtain lim
p→∞

ap+1

ap

:

Your solution

ap+1

ap

= ∴ lim
p→∞

ap+1

ap

=

Answer
ap+1

ap

=

(
p + 1

p

)3
1

(ln 3)
. Now

(
p + 1

p

)3

=

(
1 +

1

p

)3

→ 1 as p increases

∴ lim
p→∞

ap+1

ap

=
1

(ln 3)
< 1

Hence this is a convergent series.

Note that in all of these Examples and Tasks we have decided upon the convergence or divergence of
various series; we have not been able to use the tests to discover what actual number the convergent
series converges to.
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4. Absolute and conditional convergence
The ratio test applies to series of positive terms. Indeed this is true of many related tests for
convergence. However, as we have seen, not all series are series of positive terms. To apply the ratio
test such series must first be converted into series of positive terms. This is easily done. Consider

two series
∞∑

p=1

ap and
∞∑

p=1

|ap|. The latter series, obviously directly related to the first, is a series of

positive terms.

Using imprecise language, it is harder for the second series to converge than it is for the first, since,
in the first, some of the terms may be negative and cancel out part of the contribution from the
positive terms. No such cancellations can take place in the second series since they are all positive

terms. Thus it is plausible that if
∞∑

p=1

|ap| converges so does
∞∑

p=1

ap. This leads to the following

definitions.

Key Point 8

Conditional Convergence and Absolute Convergence

A convergent series
∞∑

p=1

ap is said to be conditionally convergent if
∞∑

p=1

|ap| is divergent.

A convergent series
∞∑

p=1

ap is said to be absolutely convergent if
∞∑

p=1

|ap| is convergent.

For example, the alternating harmonic series:

∞∑
p=1

(−1)p+1

p
= 1− 1

2
+

1

3
− 1

4
+ · · ·

is conditionally convergent since the series of positive terms (the harmonic series):

∞∑
p=1

∣∣∣∣(−1)p+1

p

∣∣∣∣ ≡ ∞∑
p=1

1

p
= 1 +

1

2
+

1

3
+ · · ·

is divergent.
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Task

Show that the series − 1

2!
+

1

4!
− 1

6!
+ · · · is absolutely convergent.

First, find the general term of the series:

Your solution

− 1

2!
+

1

4!
− 1

6!
+ · · · =

∞∑
p=1

( ) ∴ ap ≡

Answer

− 1

2!
+

1

4!
− 1

6!
+ · · · =

∞∑
p=1

(−1)p

(2p)!
∴ ap ≡

(−1)p

(2p)!

Write down an expression for the related series of positive terms:

Your solution

1

2!
+

1

4!
+

1

6!
+ · · · =

∞∑
p=1

( ) ∴ ap =

Answer
∞∑

p=1

1

(2p)!
so ap =

1

(2p)!

Now use the ratio test to examine the convergence of this series:

Your solution

pth term = (p + 1)th term =

Answer

pth term =
1

(2p)!
(p + 1)th term =

1

(2(p + 1))!

Find lim
p→∞

[
(p + 1)th term

pth term

]
:

Your solution

lim
p→∞

[
(p + 1)th term

pth term

]
=

Answer
(2p)!

(2(p + 1))!
=

2p(2p− 1) . . .

(2p + 2)(2p + 1)2p(2p− 1) . . .
=

1

(2p + 2)(2p + 1)
→ 0 as p increases.

So the series of positive terms is convergent by the ratio test. Hence
∞∑

p=1

(−1)p

(2p)!
is absolutely

convergent.
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Exercises

1. Which of the following alternating series are convergent?

(a)
∞∑

p=1

(−1)p ln(3)

p
(b)

∞∑
p=1

(−1)p+1

p2 + 1
(c)

∞∑
p=1

p sin(2p + 1)
π

2
(p + 100)

2. Use the ratio test to examine the convergence of the series:

(a)
∞∑

p=1

e4

(2p + 1)p+1
(b)

∞∑
p=1

p3

p!
(c)

∞∑
p=1

1
√

p

(d)
∞∑

p=1

1

(0.3)p
(e)

∞∑
p=1

(−1)p+1

3p

3. For what values of x are the following series absolutely convergent?

(a)
∞∑

p=1

(−1)pxp

p
(b)

∞∑
p=1

(−1)pxp

p!

Answers

1. (a) convergent, (b) convergent, (c) divergent

2. (a) λ = 0 so convergent

(b) λ = 0 so convergent

(c) λ = 1 so test is inconclusive. However, since
1

p1/2
>

1

p
then the given series is divergent

by comparison with the harmonic series.

(d) λ = 10/3 so divergent, (e) Not a series of positive terms so the ratio test cannot be
applied.

3. (a) The related series of positive terms is
∞∑

p=1

|x|p

p
. For this series, using the ratio test we find

λ = |x| so the original series is absolutely convergent if |x| < 1.

(b) The related series of positive terms is
∞∑

p=1

|x|p

p!
. For this series, using the ratio test we

find λ = 0 (irrespective of the value of x) so the original series is absolutely convergent for
all values of x.
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The Binomial Series
�
�

�
�16.3

Introduction
In this Section we examine an important example of an infinite series, the binomial series:

1 + px +
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·

We show that this series is only convergent if |x| < 1 and that in this case the series sums to the
value (1+x)p. As a special case of the binomial series we consider the situation when p is a positive
integer n. In this case the infinite series reduces to a finite series and we obtain, by replacing x with
b

a
, the binomial theorem:

(b + a)n = bn + nbn−1a +
n(n− 1)

2!
bn−2a2 + · · ·+ an.

Finally, we use the binomial series to obtain various polynomial expressions for (1 + x)p when x is
‘small’.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• understand the factorial notation

• have knowledge of the ratio test for
convergence of infinite series.

• understand the use of inequalities'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• recognise and use the binomial series

• state and use the binomial theorem

• use the binomial series to obtain numerical
approximations

26 HELM (2008):
Workbook 16: Sequences and Series



®

1. The binomial series
A very important infinite series which occurs often in applications and in algebra has the form:

1 + px +
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·

in which p is a given number and x is a variable. By using the ratio test it can be shown that this
series converges, irrespective of the value of p, as long as |x| < 1. In fact, as we shall see in Section
16.5 the given series converges to the value (1 + x)p as long as |x| < 1.

Key Point 9

The Binomial Series

(1 + x)p = 1 + px +
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · |x| < 1

The binomial theorem can be obtained directly from the binomial series if p is chosen to be a positive
integer (here we need not demand that |x| < 1 as the series is now finite and so is always convergent
irrespective of the value of x). For example, with p = 2 we obtain

(1 + x)2 = 1 + 2x +
2(1)

2
x2 + 0 + 0 + · · ·

= 1 + 2x + x2 as is well known.

With p = 3 we get

(1 + x)3 = 1 + 3x +
3(2)

2
x2 +

3(2)(1)

3!
x3 + 0 + 0 + · · ·

= 1 + 3x + 3x2 + x3

Generally if p = n (a positive integer) then

(1 + x)n = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·+ xn

which is a form of the binomial theorem. If x is replaced by
b

a
then(

1 +
b

a

)n

= 1 + n

(
b

a

)
+

n(n− 1)

2!

(
b

a

)2

+ · · ·+
(

b

a

)n

Now multiplying both sides by an we have the following Key Point:
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Key Point 10

The Binomial Theorem

If n is a positive integer then the expansion of (a + b) raised to the power n is given by:

(a + b)n = an + nan−1b +
n(n− 1)

2!
an−2b2 + · · ·+ bn

This is known as the binomial theorem.

Task

Use the binomial theorem to obtain (a) (1 + x)7 (b) (a + b)4

(a) Here n = 7:

Your solution

(1 + x)7 =

Answer

(1 + x)7 = 1 + 7x + 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7

(b) Here n = 4:

Your solution

(a + b)4 =

Answer

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

Task

Given that x is so small that powers of x3 and above may be ignored in comparison
to lower order terms, find a quadratic approximation of (1 − x)

1
2 and check for

accuracy your approximation for x = 0.1.

First expand (1− x)
1
2 using the binomial series with p =

1

2
and with x replaced by (−x):

Your solution

(1− x)
1
2 =
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Answer

(1− x)
1
2 = 1− 1

2
x +

1
2
(− 1

2
)

2
x2 −

1
2(−

1
2)(−

3
2)

6
x3 + · · ·

Now obtain the quadratic approximation:

Your solution

(1− x)
1
2 '

Answer

(1− x)
1
2 ' 1− 1

2
x− 1

8
x2

Now check on the validity of the approximation by choosing x = 0.1:

Your solution

Answer
On the left-hand side we have

(0.9)
1
2 = 0.94868 to 5 d.p. obtained by calculator

whereas, using the quadratic expansion:

(0.9)
1
2 ≈ 1− 1

2
(0.1)− 1

8
(0.1)2 = 1− 0.05− (0.00125) = 0.94875.

so the error is only 0.00007.

What we have done in this last Task is to replace (or approximate) the function (1−x)
1
2 by the simpler

(polynomial) function 1− 1

2
x− 1

8
x2 which is reasonable provided x is very small. This approximation

is well illustrated geometrically by drawing the curves y = (1−x)
1
2 and y = 1− 1

2
x− 1

8
x2. The two

curves coincide when x is ‘small’. See Figure 2:

x

y(1 − x)
1
2

1 − 1

2
x − 1

8
x2

1

Figure 2

HELM (2008):
Section 16.3: The Binomial Series

29



Task

Obtain a cubic approximation of
1

(2 + x)
. Check your approximation for accuracy

using appropriate values of x.

First write the term
1

(2 + x)
in a form suitable for the binomial series (refer to Key Point 9):

Your solution
1

(2 + x)
=

Answer
1

2 + x
=

1

2
(
1 +

x

2

) =
1

2

(
1 +

x

2

)−1

Now expand using the binomial series with p = −1 and
x

2
instead of x, to include terms up to x3:

Your solution
1

2

(
1 +

x

2

)−1

=

Answer

1

2

(
1 +

x

2

)−1

=
1

2

{
1 + (−1)

x

2
+

(−1)(−2)

2!

(x

2

)2

+
(−1)(−2)(−3)

3!

(x

2

)3
}

=
1

2
− x

4
+

x2

8
− x3

16

State the range of x for which the binomial series of
(
1 +

x

2

)−1

is valid:

Your solution

The series is valid if

Answer

valid as long as
∣∣∣x
2

∣∣∣ < 1 i.e. |x| < 2 or −2 < x < 2
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Choose x = 0.1 to check the accuracy of your approximation:

Your solution
1

2

(
1 +

0.1

2

)−1

=

1

2
− 0.1

4
+

0.01

8
− 0.001

16
=

Answer
1

2

(
1 +

0.1

2

)−1

= 0.47619 to 5 d.p.

1

2
− 0.1

4
+

0.01

8
− 0.001

16
= 0.4761875.

Figure 3 below illustrates the close correspondence (when x is ‘small’) between the curves y =
1

2
(1 +

x

2
)−1 and y =

1

2
− x

4
+

x2

8
− x3

16
.

x

y

(2 + x)−1

1
2
− x

4
+

x2

8
− x3

16

2

Figure 3

Exercises

1. Determine the expansion of each of the following

(a) (a + b)3, (b) (1− x)5, (c) (1 + x2)−1, (d) (1− x)1/3.

2. Obtain a cubic approximation (valid if x is small) of the function (1 + 2x)3/2.

Answers

1. (a) (a + b)3 = a3 + 3a2b + 3ab2 + b3

(b) (1− x)5 = 1− 5x + 10x2 − 10x3 + 5x4 − x5

(c) (1 + x2)−1 = 1− x2 + x4 − x6 + · · ·

(d) (1− x)1/3 = 1− 1

3
x− 1

9
x2 − 5

81
x3 + · · ·

2. (1 + 2x)3/2 = 1 + 3x +
3

2
x2 − 1

2
x3 + · · ·
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Power Series
�
�

�
�16.4

Introduction
In this Section we consider power series. These are examples of infinite series where each term
contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius
of convergence R, of the power series and state the important result that the series is absolutely
convergent if |x| < R, divergent if |x| > R and may or may not be convergent if x = ±R. Finally,
we extend the work to apply to general power series when the variable x is replaced by (x− x0).

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• have knowledge of infinite series and of the
ratio test

• have knowledge of inequalities and of the
factorial notation.'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• explain what a power series is

• obtain the radius of convergence for a power
series

• explain what a general power series is
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1. Power series

A power series is simply a sum of terms each of which contains a variable raised to a non-negative
integer power. To illustrate:

x− x3 + x5 − x7 + · · ·

1 + x +
x2

2!
+

x3

3!
+ · · ·

are examples of power series. In 16.3 we encountered an important example of a power series,
the binomial series:

1 + px +
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·

which, as we have already noted, represents the function (1 + x)p as long as the variable x satisfies
|x| < 1.

A power series has the general form

b0 + b1x + b2x
2 + · · · =

∞∑
p=0

bpx
p

where b0, b1, b2, · · · are constants. Note that, in the summation notation, we have chosen to start
the series at p = 0. This is to ensure that the power series can include a constant term b0 since
x0 = 1.

The convergence, or otherwise, of a power series, clearly depends upon the value of x chosen. For
example, the power series

1 +
x

2
+

x2

3
+

x3

4
+ · · ·

is convergent if x = −1 (for then it is the alternating harmonic series) and divergent if x = +1 (for
then it is the harmonic series).

2. The radius of convergence

The most important statement one can make about a power series is that there exists a number, R,
called the radius of convergence, such that if |x| < R the power series is absolutely convergent and
if |x| > R the power series is divergent. At the two points x = −R and x = R the power series
may be convergent or divergent.
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Key Point 11

Convergence of Power Series

For a power series
∞∑

p=0

bpx
p with radius of convergence R then

• the series converges absolutely if |x| < R

• the series diverges if |x| > R

• the series may be convergent or divergent at x = ±R

x

divergentconvergent

−R R0

divergent

For any particular power series
∞∑

p=0

bpx
p the value of R can be obtained using the ratio test. We

know, from the ratio test that
∞∑

p=0

bpx
p is absolutely convergent if

lim
p→∞

|bp+1x
p+1|

|bpxp|
= lim

p→∞

∣∣∣∣bp+1

bp

∣∣∣∣ |x| < 1 implying |x| < lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ and so R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ .

Example 2
(a) Find the radius of convergence of the series

1 +
x

2
+

x2

3
+

x3

4
+ · · ·

(b) Investigate what happens at the end-points x = −1, x = +1 of the region of
absolute convergence.
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Solution

(a) Here 1 +
x

2
+

x2

3
+

x3

4
+ · · · =

∞∑
p=0

xp

p + 1

so

bp =
1

p + 1
∴ bp+1 =

1

p + 2

In this case,

R = lim
p→∞

∣∣∣∣p + 2

p + 1

∣∣∣∣ = 1

so the given series is absolutely convergent if |x| < 1 and is divergent if |x| > 1.

(b) At x = +1 the series is 1 + 1
2

+ 1
3

+ · · · which is divergent (the harmonic series). However, at
x = −1 the series is 1− 1

2
+ 1

3
− 1

4
+ · · · which is convergent (the alternating harmonic series).

Finally, therefore, the series

1 +
x

2
+

x2

3
+

x3

4
+ · · ·

is convergent if −1 ≤ x < 1.

Task

Find the range of values of x for which the following power series converges:

1 +
x

3
+

x2

32
+

x3

33
+ · · ·

First find the coefficient of xp:

Your solution

bp =

Answer

bp =
1

3p

Now find R, the radius of convergence:

Your solution

R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ =

Answer

R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ = lim
p→∞

∣∣∣∣3p+1

3p

∣∣∣∣ = lim
p→∞

(3) = 3.

When x = ±3 the series is clearly divergent. Hence the series is convergent only if −3 < x < 3.
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3. Properties of power series
Let P1 and P2 represent two power series with radii of convergence R1 and R2 respectively. We can
combine P1 and P2 together by addition and multiplication. We find the following properties:

Key Point 12

If P1 and P2 are power series with respective radii of convergence R1 and R2 then the sum (P1 +P2)
and the product (P1P2) are each power series with the radius of convergence being the smaller of
R1 and R2.

Power series can also be differentiated and integrated on a term by term basis:

Key Point 13

If P1 is a power series with radius of convergence R1 then

d

dx
(P1) and

∫
(P1) dx

are each power series with radius of convergence R1

Example 3
Using the known result that (1 + x)p = 1 + px +

p(p− 1)

2!
x2 + · · · |x| < 1,

choose p = 1
2

and by differentiating obtain the power series expression for (1+x)−
1
2 .

Solution

(1 + x)
1
2 = 1 +

x

2
+

1
2

(
−1

2

)
2!

x2 +
1
2

(
−1

2

) (
−3

2

)
3!

x3 + · · ·

Differentiating both sides:
1

2
(1 + x)−

1
2 =

1

2
+

1

2

(
−1

2

)
x +

1
2

(
−1

2

) (
−3

2

)
2

x2 + · · ·

Multiplying through by 2: (1 + x)−
1
2 = 1− 1

2
x +

(
−1

2

) (
−3

2

)
2

x2 + · · ·

This result can, of course, be obtained directly from the expansion for (1 + x)p with p = −1
2
.
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Task

Using the known result that

1

1 + x
= 1− x + x2 − x3 + · · · |x| < 1,

(a) Find an expression for ln(1 + x)

(b) Use the expression to obtain an approximation to ln(1.1)

(a) Integrate both sides of
1

1 + x
= 1− x + x2 − · · · and so deduce an expression for ln(1 + x):

Your solution∫
dx

1 + x
=∫

(1− x + x2 − · · · ) dx =

Answer∫
dx

1 + x
= ln(1 + x) + c where c is a constant of integration,∫

(1− x + x2 − · · · ) dx = x− x2

2
+

x3

3
− · · ·+ k where k is a constant of integration.

So we conclude ln(1 + x) + c = x− x2

2
+

x3

3
− · · ·+ k if |x| < 1

Choosing x = 0 shows that c = k so they cancel from this equation.

(b) Now choose x = 0.1 to approximate ln(1 + 0.1) using terms up to cubic:

Your solution

ln(1.1) = 0.1− (0.1)2

2
+

(0.1)3

3
− · · · '

Answer

ln(1.1) ' 0.0953 which is easily checked by calculator.
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4. General power series
A general power series has the form

b0 + b1(x− x0) + b2(x− x0)
2 + · · · =

∞∑
p=0

bp(x− x0)
p

Exactly the same considerations apply to this general power series as apply to the ‘special’ series
∞∑

p=0

bpx
p except that the variable x is replaced by (x−x0). The radius of convergence of the general

series is obtained in the same way:

R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣
and the interval of convergence is now shifted to have centre at x = x0 (see Figure 4 below). The
series is absolutely convergent if |x−x0| < R, diverges if |x−x0| > R and may or may not converge
if |x− x0| = R.

x

divergent

0

divergent

x0−R x0 x0+R

convergent

Figure 4

Task

Find the radius of convergence of the general power series

1− (x− 1) + (x− 1)2 − (x− 1)3 + · · ·

First find an expression for the general term:

Your solution

1− (x− 1) + (x− 1)2 − (x− 1)3 + · · · =
∞∑

p=0

Answer
∞∑

p=0

(x− 1)p(−1)p so bp = (−1)p

Now obtain the radius of convergence:

Your solution

lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ = ∴ R =

Answer

lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ = lim
p→∞

∣∣∣∣ (−1)p

(−1)p+1

∣∣∣∣ = 1.

Hence R = 1, so the series is absolutely convergent if |x− 1| < 1.

38 HELM (2008):
Workbook 16: Sequences and Series



®

Finally, decide on the convergence at |x− 1| = 1 (i.e. at x− 1 = −1 and x− 1 = 1 i.e. x = 0 and
x = 2):

Your solution

Answer
At x = 0 the series is 1 + 1 + 1 + · · · which diverges and at x = 2 the series is 1− 1 + 1− 1 · · ·
which also diverges. Thus the given series only converges if |x− 1| < 1 i.e. 0 < x < 2.

x

divergent

0

divergent

2

convergent

Exercises

1. From the result
1

1− x
= 1 + x + x2 + x3 + . . . , |x| < 1

(a) Find an expression for ln(1− x)

(b) Use this expression to obtain an approximation to ln(0.9) to 4 d.p.

2. Find the radius of convergence of the general power series 1−(x+2)+(x+2)2−(x+2)3 + . . .

3. Find the range of values of x for which the power series 1 +
x

4
+

x2

42
+

x3

43
+ . . . converges.

4. By differentiating the series for (1 + x)1/3 find the power series for (1 + x)−2/3 and state its
radius of convergence.

5. (a) Find the radius of convergence of the series 1 +
x

3
+

x2

4
+

x3

5
+ . . .

(b) Investigate what happens at the points x = −1 and x = +1

Answers

1. ln(1− x) = −x− x2

2
− x3

3
− x4

4
− . . . ln(0.9) ≈ −0.1054 (4 d.p.)

2. R = 1. Series converges if −3 < x < −1. If x = −1 series diverges. If x = −3 series diverges.

3. Series converges if −4 < x < 4.

4. (1 + x)−2/3 = 1− 2

3
x +

5

3
x2 + . . . valid for |x| < 1.

5. (a) R = 1. (b) At x = +1 series diverges. At x = −1 series converges.
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Maclaurin and Taylor
Series

�
�

�
�16.5

Introduction
In this Section we examine how functions may be expressed in terms of power series. This is an
extremely useful way of expressing a function since (as we shall see) we can then replace ‘complicated’
functions in terms of ‘simple’ polynomials. The only requirement (of any significance) is that the
‘complicated’ function should be smooth; this means that at a point of interest, it must be possible
to differentiate the function as often as we please.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• have knowledge of power series and of the
ratio test

• be able to differentiate simple functions

• be familiar with the rules for combining
power series'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• find the Maclaurin and Taylor series
expansions of given functions

• find Maclaurin expansions of functions by
combining known power series together

• find Maclaurin expansions by using
differentiation and integration
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1. Maclaurin and Taylor series
As we shall see, many functions can be represented by power series. In fact we have already seen in
earlier Sections examples of such a representation:

1

1− x
= 1 + x + x2 + · · · |x| < 1

ln(1 + x) = x− x2

2
+

x3

3
− · · · − 1 < x ≤ 1

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · all x

The first two examples show that, as long as we constrain x to lie within the domain |x| < 1

(or, equivalently, −1 < x < 1), then in the first case
1

1− x
has the same numerical value as

1+x+x2 + · · · and in the second case ln(1+x) has the same numerical value as x− x2

2
+

x3

3
−· · · .

In the third example we see that ex has the same numerical value as 1 + x +
x2

2!
+ · · · but in this

case there is no restriction to be placed on the value of x since this power series converges for all
values of x. Figure 5 shows this situation geometrically. As more and more terms are used from the

series 1 + x +
x2

2!
+

x3

3!
· · · the curve representing ex is a better and better approximation. In (a) we

show the linear approximation to ex. In (b) and (c) we show, respectively, the quadratic and cubic
approximations.

x

y

ex

1 + x

1 + x +
x2

2!
1 + x +

x2

2!
+

x3

3!

(a) (b) (c)
x

y

x

y

ex
ex

Figure 5: Linear, quadratic and cubic approximations to ex

These power series representations are extremely important, from many points of view. Numerically,

we can simply replace the function
1

1− x
by the quadratic expression 1 + x + x2 as long as x is

so small that powers of x greater than or equal to 3 can be ignored in comparison to quadratic
terms. This approach can be used to approximate more complicated functions in terms of simpler
polynomials. Our aim now is to see how these power series expansions are obtained.
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2. The Maclaurin series
Consider a function f(x) which can be differentiated at x = 0 as often as we please. For example
ex, cos x, sin x would fit into this category but |x| would not.
Let us assume that f(x) can be represented by a power series in x:

f(x) = b0 + b1x + b2x
2 + b3x

3 + b4x
4 + · · · =

∞∑
p=0

bpx
p

where b0, b1, b2, . . . are constants to be determined.

If we substitute x = 0 then, clearly f(0) = b0

The other constants can be determined by further differentiating and, on each differentiation, sub-
stituting x = 0. For example, differentiating once:

f ′(x) = 0 + b1 + 2b2x + 3b3x
2 + 4b4x

3 + · · ·

so, putting x = 0, we have f ′(0) = b1.
Continuing to differentiate:

f ′′(x) = 0 + 2b2 + 3(2)b3x + 4(3)b4x
2 + · · ·

so

f ′′(0) = 2b2 or b2 =
1

2
f ′′(0)

Further:

f ′′′(x) = 3(2)b3+4(3)(2)b4x+· · · so f ′′′(0) = 3(2)b3 implying b3 =
1

3(2)
f ′′′(0)

Continuing in this way we easily find that (remembering that 0! = 1)

bn =
1

n!
f (n)(0) n = 0, 1, 2, . . .

where f (n)(0) means the value of the nth derivative at x = 0 and f (0)(0) means f(0).
Bringing all these results together we have:

Key Point 14

Maclaurin Series

If f(x) can be differentiated as often as required:

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · · =

∞∑
p=0

xp

p!
f (p)(0)

This is called the Maclaurin expansion of f(x).
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Example 4
Find the Maclaurin expansion of cos x.

Solution

Here f(x) = cos x and, differentiating a number of times:

f(x) = cos x, f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x etc.

Evaluating each of these at x = 0:

f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0 etc.

Substituting into f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · · , gives:

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

The reader should confirm (by finding the radius of convergence) that this series is convergent for
all values of x. The geometrical approximation to cos x by the first few terms of its Maclaurin series
are shown in Figure 6.

x

y yy

xxcos x
1 − x2

2!

1 − x2

2!
+

x4

4!

cos x cos x

Figure 6: Linear, quadratic and cubic approximations to cos x

Task

Find the Maclaurin expansion of ln(1 + x).

(Note that we cannot find a Maclaurin expansion of the function ln x since ln x
does not exist at x = 0 and so cannot be differentiated at x = 0.)

Find the first four derivatives of f(x) = ln(1 + x):

Your solution

f ′(x) = f ′′(x) = f ′′′(x) = f ′′′′(x) =
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Answer

f ′(x) =
1

1 + x
, f ′′(x) =

−1

(1 + x)2
, f ′′′(x) =

2

(1 + x)3
,

generally: f (n)(x) =
(−1)n+1(n− 1)!

(1 + x)n

Now obtain f(0), f ′(0), f ′′(0), f ′′′(0):

Your solution

f(0) = f ′(0) = f ′′(0) = f ′′′(0) =

Answer
f(0) = 0 f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2,

generally: f (n)(0) = (−1)n+1(n− 1)!

Hence, obtain the Maclaurin expansion of ln(1 + x):

Your solution

ln(1 + x) =

Answer

ln(1 + x) = x− x2

2
+

x3

3
. . . +

(−1)n+1

n
xn + · · · (This was obtained in Section 16.4, page 37.)

Now obtain the radius of convergence and consider the situation at the boundary values:

Your solution

Radius of convergence R =

Answer
R = 1. Also at x = 1 the series is convergent (alternating harmonic series) and at x = −1 the
series is divergent. Hence this Maclaurin expansion is only valid if −1 < x ≤ 1.

The geometrical closeness of the polynomial terms with the function ln(1 + x) for −1 < x ≤ 1 is
displayed in Figure 7:

y

x

y

x

y

x

x

x − x2

2

x − x2

2
+

x3

3

ln(1 + x) ln(1 + x) ln(1 + x)

Figure 7: Linear, quadratic and cubic approximations to ln(1 + x)
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Note that when x = 1 ln 2 = 1− 1

2
+

1

3
− 1

4
· · · so the alternating harmonic series converges to

ln 2 ' 0.693, as stated in Section 16.2, page 17.

The Maclaurin expansion of a product of two functions: f(x)g(x) is obtained by multiplying together
the Maclaurin expansions of f(x) and of g(x) and collecting like terms together. The product series
will have a radius of convergence equal to the smaller of the two separate radii of convergence.

Example 5
Find the Maclaurin expansion of ex ln(1 + x).

Solution

Here, instead of finding the derivatives of f(x) = ex ln(1+x), we can more simply multiply together
the Maclaurin expansions for ex and ln(1 + x) which we already know:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · all x

and

ln(1 + x) = x− x2

2
+

x3

3
+ · · · − 1 < x ≤ 1

The resulting power series will only be convergent if −1 < x ≤ 1. Multiplying:

ex ln(1 + x) =

(
1 + x +

x2

2!
+

x3

3!
+ · · ·

) (
x− x2

2
+

x3

3
+ · · ·

)

= x− x2

2
+

x3

3
− x4

4
+ · · ·

+ x2 − x3

2
+

x4

3
+ · · ·

+
x3

2
− x4

4
· · ·

+
x4

6
· · ·

= x +
x2

2
+

x3

3
+

3x5

40
+ · · · − 1 < x ≤ 1

(You must take care not to miss relevant terms when carrying through the multiplication.)
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Task

Find the Maclaurin expansion of cos2 x up to powers of x4. Hence write down
the expansion of sin2 x to powers of x6.

First, write down the expansion of cos x:

Your solution

cos x =

Answer

cos x = 1− x2

2!
+

x4

4!
+ · · ·

Now, by multiplication, find the expansion of cos2 x:

Your solution

cos2 x =

Answer

cos2 x =

(
1− x2

2!
+

x4

4!
· · ·

) (
1− x2

2!
+

x4

4!
· · ·

)
= (1− x2

2!
+

x4

4!
· · · ) + (−x2

2!
+

x4

4
· · · ) + (

x4

4!
· · · ) + · · · = 1− x2 +

x4

3
− 2x6

45
· · ·

Now obtain the expansion of sin2 x using a suitable trigonometric identity:

Your solution

sin2 x =

Answer

sin2 x = 1− cos2 x = 1−
(

1− x2 +
x4

3
− 2x6

45
+ · · ·

)
= x2 − x4

3
+

2x6

45
+ · · ·

As an alternative approach the reader could obtain the power series expansion for cos2 x by using the

trigonometric identity cos2 x ≡ 1

2
(1 + cos 2x).
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Example 6
Find the Maclaurin expansion of tanh x up to powers of x5.

Solution

The first two derivatives of f(x) = tanh x are

f ′(x) = sech2x f ′′(x) = −2sech2x tanh x f ′′′(x) = 4sech2x tanh2 x− 2sech4x · · ·

giving f(0) = 0, f ′(0)− 1, f ′′(0) = 0 f ′′′(0) = −2 · · ·

This leads directly to the Maclaurin expansion as tanh x = 1− 1

3
x3 +

2

15
x5 · · ·

Example 7
The relationship between the wavelength, L, the wave period, T , and the water

depth, d, for a surface wave in water is given by: L =
gT 2

2π
tanh

(
2πd

L

)
In a particular case the wave period was 10 s and the water depth was 6.1 m.
Taking the acceleration due to gravity, g, as 9.81 m s−2 determine the wave
length.

[Hint: Use the series expansion for tanh x developed in Example 6.]

Solution

Substituting for the wave period, water depth and g we get

L =
9.81× 102

2π
tanh

(
2π × 6.1

L

)
=

490.5

π
tanh

(
12.2π

L

)
The series expansion of tanh x is given by tanh x = x− x3

3
+

2x5

15
+ · · ·

Using the series expansion of tanh x we can approximate the equation as

L =
490.5

π

{(
12.2π

L

)
− 1

3

(
12.2π

L

)3

+ · · ·

}
Multiplying through by πL3 the equation becomes

πL4 = 490.5× 12.2πL2 − 490.5

3
× (12.2π)3

This equation can be rewritten as L4 − 5984.1L2 + 2930198 = 0

Solving this as a quadratic in L2 we get L = 74 m.

Using Newton-Raphson iteration this can be further refined to give a wave length of 73.9 m.
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3. Differentiation of Maclaurin series
We have already noted that, by the binomial series,

1

1− x
= 1 + x + x2 + x3 + · · · |x| < 1

Thus, with x replaced by −x

1

1 + x
= 1− x + x2 − x3 + · · · |x| < 1

We have previously obtained the Maclaurin expansion of ln(1 + x):

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · − 1 < x ≤ 1

Now, we differentiate both sides with respect to x:

1

1 + x
= 1− x + x2 − x3 + · · ·

This result matches that found from the binomial series and demonstrates that the Maclaurin ex-
pansion of a function f(x) may be differentiated term by term to give a series which will be the

Maclaurin expansion of
df

dx
.

As we noted in Section 16.4 the derived series will have the same radius of convergence as the
original series.

Task

Find the Maclaurin expansion of (1− x)−3 and state its radius of convergence.

First write down the expansion of (1− x)−1:

Your solution
1

1− x

Answer
1

1− x
= 1 + x + x2 + · · · |x| < 1

Now, by differentiation, obtain the expansion of
1

(1− x)2
:

Your solution
1

(1− x)2
=

d

dx

(
1

1− x

)
=

Answer
1

(1− x)2
=

d

dx
(1 + x + x2 + · · · ) = 1 + 2x + 3x2 + 4x3
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Differentiate again to obtain the expansion of (1− x)−3:

Your solution
1

(1− x)3
=

1

2

d

dx

(
1

(1− x)2

)
=

1

2
[ ]

=

Answer
1

(1− x)3
=

1

2

d

dx

(
1

(1− x)2

)
=

1

2
[2 + 6x + 12x2 + 20x3 + · · · ] = 1+3x+6x2 +10x3 + · · ·

Finally state its radius of convergence:

Your solution

Answer
The final series: 1+3x+6x2 +10x3 + · · · has radius of convergence R = 1 since the original series

has this radius of convergence. This can also be found directly using the formula R = lim
n→∞

∣∣∣∣ bn

bn+1

∣∣∣∣
and using the fact that the coefficient of the nth term is bn =

1

2
n(n + 1).

4. The Taylor series
The Taylor series is a generalisation of the Maclaurin series being a power series developed in powers
of (x− x0) rather than in powers of x. Thus

Key Point 15

Taylor Series

If the function f(x) can be differentiated as often as required at x = x0 then:

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + · · ·

This is called the Taylor series of f(x) about the point x0.

The reader will see that the Maclaurin expansion is the Taylor expansion obtained if x0 is chosen to
be zero.
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Task

Obtain the Taylor series expansion of
1

1− x
about x = 2. (That is, find a power

series in powers of (x− 2).)

First, obtain the first three derivatives and the nth derivative of f(x) =
1

1− x
:

Your solution

f ′(x) = f ′′(x) = f ′′′(x) = f (n)(x) =

Answer

f ′(x) =
1

(1− x)2
, f ′′(x) =

2

(1− x)3
, f ′′′(x) =

6

(1− x)4
, · · · f (n)(x) =

n!

(1− x)n+1

Now evaluate these derivatives at x0 = 2:

Your solution

f ′(2) = f ′′(2) = f ′′′(2) = f (n)(2) =

Answer

f ′(2) = 1, f ′′(2) = −2, f ′′′(2) = 6, f (n)(2) = (−1)n+1n!

Hence, write down the Taylor expansion of f(x) =
1

1− x
about x = 2:

Your solution
1

1− x
=

Answer
1

1− x
= −1 + (x− 2)− (x− 2)2 + (x− 2)3 + · · ·+ (−1)n+1(x− 2)n + · · ·
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Exercises

1. Show that the series obtained in the last Task is convergent if |x− 2| < 1.

2. Sketch the linear, quadratic and cubic approximations to
1

1− x
obtained from the series in the

last task and compare to
1

1− x
.

Answer

2. In the following diagrams some of the terms from the Taylor series are plotted to compare with
1

(1− x)
.

y

x

y

x

y

x

1

1 − x

−1 + (x − 2)

−1 + (x − 2) − (x − 2)2

−1 + (x − 2) − (x − 2)2 + (x − 2)3

1 2

1

1 − x

1

1 − x

1 2

1 2
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